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Convergence of Product Integration Rules 
for Functions With Interior and Endpoint Singularities 

Over Bounded and Unbounded Intervals 

By D. S. Lubinsky * and Avram Sidi 

Abstract. The convergence of product integration rules, based on Gaussian quadrature points, 
is investigated for functions with interior and endpoint singularities over bounded and 
unbounded intervals. The investigation is based on a new convergence result for Lagrangian 
interpolation and Gaussian quadrature of singular integrands. 

1. Introduction. The standard product integration rule has the form 

bf (x)k(x) dx AWif (xi) 
a i=1 

where k(x) is a badly behaved function; the {Xni} are chosen in advance of the 
{ wn 1}, while the { wni } = { wni(k)} are determined so as to make the rule exact for a 
class of functions, such as the polynomials of degree less than n. A particularly 
attractive choice of the { xn i } is the zeros of orthogonal polynomials. For this case, a 
detailed analysis was carried out by Sloan and Smith [13, and references therein]. 
They proved convergence for the case where (a, b) is bounded; f(x) is bounded and 
Riemann integrable; the orthogonal polynomials correspond to a weight function 
w(x) = a'(x) positive almost everywhere in (a, b); and k(x) satisfies a weak 
integrability condition. More recently, Smith, Sloan and Opie [14] considered infinite 
intervals with product integration rules based on the Gauss-Hermite and Gauss- 
Laguerre points. 

The principal contribution of this paper is to show that product integration rules 
based on Gauss quadrature points still converge when the function f (x) has finitely 
many interior and endpoint singularities. Such a study may at first seem counter to 
the spirit of product integration, for usually k(x) is singular and f(x) is smooth. 
However, there are cases- for example, in the solution of certain integral equations 
-where f(x) is not smooth, and the locations of its singularities are unknown, or 
difficult to estimate, so they cannot be absorbed into k(x). Cognizance of this fact 
was taken by Rabinowitz and Sloan [11] who were the first to prove convergence of 
product integration rules for singular integrands. Their results were primarily for 
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piecewise polynomial quadrature rules, but they included some general convergence 
results [11, Theorem 1, Corollaries 1 and 2]. However, our results are not included in 
theirs, because their condition (18) in Corollary 1 [11] is difficult to verify, and not 
true for some of the weight functions and kernels k(x) considered here. This is so, 
because the weights wni in the product integration rules based on Gauss quadrature 
points involve the partial sums Sn[k](x"1) of the orthonormal expansion of k(x), 
and the latter may be unbounded even when k(x) satisfies the integrability 
conditions used in this paper. 

A second feature of the main result (Theorem 4.2) is that the weight function 
da(x) is restricted only in the sense that it must be the unique solution of its 
moment problem. Hence da(x) can be a pure jump distribution, and the interval 
(a, b) containing its support may be unbounded. Unfortunately, the generality of the 
weight function sacrifices some generality of the kernel k(x) (d/3/da)(x)a'(x) in 
our notation), so that the conditions on the kernel involve (k )2, rather than Ik I J for 
some p > 1. The reason for this is that mean convergence in Lp of Lagrangian 
interpolation at zeros of orthogonal polynomials holds for general weights only when 
p = 2 (Nevai [8]). 

Along the way to proving Theorem 4.2, we establish a new result on convergence 
of Gaussian quadrature and L2 convergence of Lagrange interpolation for functions 
with interior singularities, i.e., Theorem 3.5. This result is the corrected version of 
Problems 12 and 13 in [4, pp. 132-133] and is more general than any previous result 
for Gaussian quadrature of singular integrands. 

2. Notation. (i) Throughout, (a, b) will be a fixed real interval (- oc < a < b < oc) 
and a: (a, b) -+ R will be right continuous, monotone increasing with infinitely 
many points of increase such that 

(2.1) 1=J Xida(x) < x, j= O,1,2,.... 
a 

We assume that, apart from normalization, a is the unique solution of the (Ham- 
burger) moment problem (2.1)-see for example Freud [4, Chapter 2]. 

(ii) (o, T21 ... will be the sequence of orthonormal polynomials for a, and 
a < xnl < Xn2 < ... < Xnn < b will denote the zeros of pn, while we write xnO = a, 
Xn ,n+1 =b, n = 1, 2, 3, .... The Gauss-Jacobi quadrature rule of order n is 

b 
~~~~~~~n 

(2.2) fbg(x) da(x) - K"(g) =E Xnjg(X) 
a j=l 

and is exact for polynomials of degree less than 2n. When g(x) has finitely many 
singularities in (a, b), we modify (2.2) as follows: Suppose for some positive integer / 

(2.3) 
{a <Y1 <Y2 < <y, < b arethosepointsin (ab) 

(for which limsup,,YIg(x) = oo, i = 1,2,..., 1. 

Define (n, g) to be the subset of {1, 2, .. ., n } such that j E r(n, g) if 

(2.4A) either {Y1 Y2'...IY/} n(xnj-1,xnyj1)= 0 

(2.4B) ( or if for any i, 1 < i < 1, such that yi e (xnJ-11, xn ,+l) 

I(a(xn) - a(y1) 1> X.nI 
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Define 

(2.5) K *(g) = E Xnjg(xn1) 
j T(n, g) 

The condition (2.4A) ensures that, in forming K*(g), we include those abscissas 

Xnjq which are not the closest among the {Xnili from the left or right, to any 
singularity of g. The condition (2.4B) ensures that we include also those abscissas 

Xnj which are closest from the left or right to some singularity of g, provided they 
are not "too close" to the singularity. 

One can modify (2.4B): Xny can be replaced by cXn (c a positive constant). One 
can even omit (2.4B) altogether. In both these cases, the main results still hold, 
though one has then to modify Lemma 3.2. 

Note that T(n , g) omits at most 21 integers, that is at most two integers per 
interior singularity of g. When g has no interior singularities, then T(n, g) = 

{1, 2,..., n } and K*(g)= KJ(g) We remark that when more is assumed about 
a(x), then (2.4B) can be modified so that T(n, g) omits at most one integer per 
interior singularity of g (see [7]). 

(iii) Whenever the (Lebesgue-Stieltjes) integrals are defined, we set 

(2.6) Sn[g](X) = (f g(t)Tj(t) da(t)}cpj(x), 

that is, Sj[g] is the (n + I)st partial sum of the orthogonal series expansion of g in 
the {q} 

(iv) Set 

ini(x) 9l(,'-" 1 < < n , 

J*i 

so that Ln(g) = =1l1ni(x)g(xni) is the Lagrangian polynomial of degree < n - 1 
interpolating to g at the { xn i }. When g has interior singularities, we define 

(2.7) L*(g)= l lnj(x)g(xnj) 
j T(n, g) 

with the notation of (2.3), (2.4A, B). Note that 

(2.8) X = f inj(x) da(x) I fb 1 (x) da(x), 1 < j < n 

(Freud [4, Theorem 1.3.2, p. 21]), and hence, 

(2.9) Kn(g) =b Ln(g) da(x) Kn*(g) =b L*(g) da(x). 
a a~~~~~~ 

(v) As usual, I1gll,,v = (Jb Ig(x)IPdda(x))l/P whenever p > 1 and the Lebesgue- 
Stieltjes integral is defined and finite. For p = x, I1I gII I = sup{ g(x) I: x e (a ,b)} 

(vi) We shall seek to approximate integrals of the form 

(2.10) I[1; f ] = f (x) d/3(x), 

where /3: (a, b) -* R is right continuous and of bounded variation in (a, b) and 
where, in the Lebesgue-Stieltjes sense, 

(2.11) b tjd13(t) exists and is finite, j = 0,1,2,... 
a 
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Sloan and Smith [13] considered the case d13(x) = k(x) dx. The more general form 
(2.10) allows d/3(x) to be discrete,so that I[13; f ] is a series. Approximating infinite 
series by rewriting them as Stieltjes integrals, and then using Gaussian quadrature on 
the Stieltjes integral, is of some practical and theoretical interest. 

(vii) We shall require that /3(x) is absolutely continuous with respect to a(x), that 
is, 

There is a function d13/da(x) (the Radon-Nikodym deriva- 
(2.12) tive), defined almost everywhere with respect to da(x), such 

that 

/3(x)-f dfl (u)da(u), x E (a,b), 
ada 

except possibly at discontinuities of a(x). 

In the case where d/3(x) = k(x) dx and da(x) = w(x) dx, we see that d13/da(x) = 

k(x)/w(x). Thus (2.12) is satisfied if k(x) is integrable and vanishes almost 
everywhere in { x: w(x) = 0}. One consequence of (2.12) is that whenever f(x) is 
defined almost everywhere with respect to da(x) and, whenever f(x) is Lebesgue- 
Stieltjes integrable in (a, b) with respect to d/3(x), 

(2.13) 1 f(x) d/3(x) = f1(x) dp(x) da(x). 

See Riesz-Sz. Nagy [12, p. 127] for (2.13), though they do not use the name 
"Radon-Nikodym derivative"-for the latter, see de Barra [2, Chapter 8]. Note also 
that if dIl,1(x) is the total variation of d/3(x), then 

(2.14) d/ I (x) = dfl (x) almost everywhere with respect to da(x) 

(see de Barra [2, p. 166]) and hence, 

(2.15) a a(x) dl B(x) f(x) dp (x)da(x) 

whenever f (x) is Lebesgue-Stieltjes integrable in (a, b) with respect to d/3(x). 
(2.12) forces /3 to be continuous at every point of continuity of a (among other 

things). So, given /3(x), we have to choose the a(x) on which we base the product 
integration rule in such a way that (2.12) holds. 

(viii) The product rules considered will have the form 
n 

(2.16) I[#t; f ] In[/#; f ]=EWnif (Xn,) 
i=1 

where the { wni }i are chosen to make the rule exact for polynomials of degree less 
than n. It is easy to see that 

(2.17) In[f3; f] = fb L(f ) d/:(x) 

and 

(2.18) Wni = XniSn-I[dl ](Xni), 1 < i n 
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Sloan and Smith [13] proved these for d/3(x) = k(x) dx and da(x) = w(x) dx. Note 
that in view of (2.11), (2.13), 

f tjd/3(t) = f t j d(t) da(t) 
a a ~~da 

exists for j = 0, 1, 2..... Hence, the right member of (2.18) is defined. Associated 
with (2.16), there is the "companion rule", first introduced by Sloan and Smith [13]: 

n 

(2.19) Jn[/l; I] = E Iwnilf(xni) 
i=1 

When f has singularities interior to (a, b), we define, with the notation of (2.4A, B): 

(2.20) In [f3; f] = E wnjf(xnj) 
j s(n, f ) 

(2.21) J*[/3; f ] = I wnj f (Xnj) 
jaa(n, f ) 

3. Convergence of Gaussian Quadratures. In this section, we use a lemma due 
to Shohat and a generalized Markov-Stieltjes inequality to prove a convergence 
theorem for Gaussian quadrature and Lagrange interpolation of singular integrands 
-Theorem 3.5. This theorem is the corrected version of a result stated by Freud [4, 
pp. 132-133, Problems 12, 13] which we show, by counterexample, to be incorrect. 
For functions with endpoint singularities only, detailed results appear in Freud [4, 
pp. 92-98]. These results are superior to the "dominated integrability"' results 
established in recent years, in the sense that they do not require certain inequalities 
between all weights and abscissas near the singularity, but the methods work only 
for Gaussian quadrature. 

LEMMA 3.1 (SHOHAT). Suppose G(x) is infinitely differentiable in (a, b) with 

G(2k)(x) >0 in (a, b), k = 0, 1,29 .... 

Then 

K (G) < G G(x) dot(x) , n = 0,91,929 .... 

provided the integral is convergent. 

Proof. See, for example, Freud [4, p. 92]. Q.E.D. 
The following lemma is based on a generalized Markov-Stieltjes inequality first 

proved by Posse (Freud [4, p. 33]). 

LEMMA 3.2. Suppose G(x) is infinitely differentiable in (- x, x)\ {y } with 
y E (a, b) and 

(3.1) G k(x) >0 in (-x, y); (_1)kG(k)(x) >0 in (y, ), 

k = 0,1,2,... 

Then 

(3.2) K *(G) < b G(x) da(x), n = 1,2,3. n 
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More precisely if y E (xnt, xn, ,1) some 1 < t < n, then 

(3.3) Kn (G) 
b 

f G(x) da(x) + AX G(xnt) + ?n t+IG(Xn~t+l) 

while if y = Xn t+19 some 0 < t < n, and we set G(y) = 0, then 

Kn(G) G b G(x) da(x). 

Proof. Suppose first y C (Xntg Xnt+?1) for some 0 < t < n (where a = XnO, b = 

Xnn+1) 

Now, apply the following inequality due to Posse (Freud [4, p. 33]) with =nt: 

E XnjG(Xnj) G; |(x) da (x) < 1: AnjG(Xnj) 
Xny < t ?? Xnj < 0 

so that 
t-1 1 

(3.4) 2Anj G(Xnj) <f_ G(x) da (x) 
j=1 -o 

(the sum is taken as 0 if t = 0, 1). Note that Freud proves (3.4) under the stronger 
assumption that strict inequality holds in (3.1), but as he remarks [4, p. 50, Problem 
16] consideration of Gj(x) = G(x) + -ex with e > 0 + gives (3.4) under the weaker 
assumption G(k)(x) > O in (- x, y), k = 0,1, 2,... 

To deal with Eyt?2 A 1G(Xnj), we consider the transformation x -+ -x. It is 

easy to see, that for the distribution function -y(x) = a(o) - a(-x), the orthonor- 
mal polynomials are the { qpj(-x)}. Further, the abscissas Znj and weights pnj in the 
quadrature formula with respect to -y satisfy znj, = - Xnn+l-j and l nj = /Xn,n?+l]- 
j = 1, 2, .. ., n. Next, H(x) = G( - x) satisfies 

H(')(x) = (-1)'G(-x) > 0 forx e (-x,-y), i= 0,1,2... 

Setting s = n-t and = zns = -Xnt+ in Posse's inequality yields 

Z tnjH(Znj) H(x)dy(x) < E fnjH(Znj) 
Znj < 00 

Znj 

(3.5) n oo 
E XnjG (Xnj) < | G(x) da (x) 

j=t+2 nst+ 

(the sum is taken as 0 if t = n - 1, n). Next, if t > 0 and 

(3.6) a(y) - a(xnt) > Xntg 

then monotonicity of G in (-x, y) gives 

(3.7) AtG (Xnt) < | G (x) da (x), 
xnt 

while if t < n and 

(3.8) a(xnt+l) - a(y) > AXnt+l? 

then monotonicity of G in (y, xo) gives 

(3.9) An t+IG(Xn t+l) 
Xna 

| 1 G(x) da(x)y 



CONVERGENCE OF PRODUCT INTEGRATION RULES 235 

If both (3.6), (3.8) hold, then (3.4), (3.5), (3.7), (3.9) give (3.2), (3.3), as G is 
nonnegative. If (3.6) (respectively (3.8)) fails, then (2.4B) shows that x", (respectively 
xn t?+ ) is omitted in forming the sum K *(G) and (3.2), (3.3) still follow from (3.4), 

(3.5). 
Finally, if y = Xn t+1, we apply the inequality of Posse with X = Xn t + to obtain 

(3.10) E XnG(Xn) < f G(x) da(x), 
j=1 -00 

and the inequality 

E XnjG(Xnj) < | G(x) da(x) 
j= t+ 2 nt+l 

follows from (3.10), as before, by considering the transformation x - x. Q.E.D. 
The function G(x) in Lemma 3.2 is "absolutely monotone" in (- o, y) and 

"completely monotone" in (y, ox). This, together with the above lemmas, motivates 
the following definition. 

Definition 3.3. We say that g(x) is monotone integrable on (a, b) if 
(a) there exists a nonnegative integer / and points a = yo < Yi < ... < yl < Yi+i 

= b such that a is continuous and strictly increasing from the left and right at 

Yl,**-, y,, and g is properly Riemann-Stieltjes integrable with respect to da(x) in 
each compact subinterval of (yi, yell), i = 0, 1, . . ., / with 

(3.11) lim jB g(x)l da(x) < oo, i = 0,1,...,l 
A yi +A 

(where (- oc) + -oc; oc - o-). 
(b) there exist functions Gi(x), i = 0, 1, ..., 1 + 1 such that 

(3.12) lim sup I g(x)/Gi(x) I < ox, i = 0, 1,. ..,+ 1, 
X ,Yj 

x (a, b) 

where, for i = 0 and i = 1 + 1, 

(3.13) Gi (x) is infinitely differentiable in (a, b) 

\with G2k)(x)> 0 in (a, b), k = 0,1, 2, ..., 

butfori= 1,2,...,1, 

f G1 (x) is infinitely differentiable in (- oc, ox) \ { y1 }, with 

( G k)(x) > 0 in (-oc, yi); (-1)k G k)(x) > 0 in (yi, oc), k =0,1,2, .... 

and where 

(3.15) fbGi(x)da (x) < o, i = 0,1, ... ,+ 1. 
a 

Instead of (3.12), Freud assumes more-namely, that the lim sup in (3.12) is 0. 
Esser [3] was the first to notice (for endpoint singularities) that it suffices to have the 
lim sup finite. By saying a is strictly increasing from the left and right at Y1, ..., Y1, 
we mean that for i = 1, 2, ... ., 1, there is an open interval containing yi in which a is 
strictly increasing. This is a natural requirement-if, for example, a were constant 
near yi, we could alter the values of g near yi without affecting Jab g(x) da(x). 
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A natural choice for G,(x), i = 1,2,... , 1, is G,(x) = Ix - yI-', for some 0 < 8 
< 1. In fact, one of the authors [6, Corollary 4] has shown that given e > 0, and 
provided a'(x) is bounded in a neighborhood of yi, i = 1, 2, ..., 1, one may choose 

G,(x) satisfying (b) and growing like Ix - yKI- (logIx - y,1) 
-- as x - y,. Further, 

for weights such as da(x) = exp(-Ix I) dx, x E R, A > 1, Corollary 2 in [6] shows 
that one may choose Go(x) and G1, (x) satisfying (b) and growing like 

exp(lxlx)lxl--E as lxi -x o, for some e > 0. The following lemma lists some 
closure properties of the class of monotone integrable functions. 

LEMMA 3.4. (a) Let f(x) be properly Riemann-Stieltjes integrable with respect to 
da(x) in each compact subinterval of (a, b). Further, suppose there exist C, D > 0 
and a positive even integer s such that If(x)I < C + Dxs for all x E (a, b). Then f (x) 
is monotone integrable. 

(b) If f (x), g(x) are monotone integrable and c, d E R, then so are cf (x) + dg(x), 
and If(x)I. 

(c) If f 2(x) is monotone integrable, and P(x) is a polynomial, then (f IIP)(x) and 

(f - P)2(X ) are monotone integrable. 

Proof. (a) Since f(x) has no singularities in (a, b), we have / = 0 in Definition 3.3 
and can clearly choose Go(x) = GI+I(x) = C + Dxs. 

(b) Is easy. 
(c) As g(x) = f 2(x) is monotone integrable, there exist { y, }, {G} as in Defini- 

tion 3.3. Using Hblder's inequality, and (2.1), we see fIP1 satisfies (3.11). Further, 
the G1, G2,.. ., G, that satisfy (3.12), (3.14), (3.15) for g = f 2 also satisfy (3.12), 
(3.14), (3.15) for g = f IPI, as 

lim sup I (f|P|) (x)lGi (x) |=lim sup f[ 2(X )IG,(x)] [P I(x)lf (x)] I < xo 
x-4 y, x- y, 

We need modify only Go(x) (respectively G1+ (x)) and only in the case that a 
(respectively b) are infinite. Suppose, for example, a = - oo. Choose an even integer 
s larger than the degree of p2, and consider G(x) Go(x) + xs, which obviously 
satisfies (3.13) and (3.15). Now 

IG(x)/(f |P|)(x) = [Go/f2](x)If/p I(x) + [xs/P2(x)] P7f I(x) 

> min{Go(x)/f 2(x), x s/P 2(x)} 

> c > 0 for large negative x. 

Hence, we can use G(x) as Go(x) for g = fI IP. Finally, (f - p)2 = 2 2fP + p2 
is a linear combination of monotone integrable functions. Q.E.D. 

THEOREM 3.5. (a) Let g(x) be monotone integrable. Then 

lim K *( g) b g( x) da(x). 

(b) Let g2(X) be monotone integrable. Then, 

lim ||L*(g)-gja,2 =0. 
n - 
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Proof. For functions with no interior singularities, these results are Theorem 
111.1.6(a), (b) and Theorem 111.2.2 in Freud [4, pp. 94, 97]. 

(a) We assume the 1, (y,}, (G,} are as in Definition 3.3. Fix Y = y, some 
1 < i < 1. For each n > 1, let jn denote the positive integer such that y E 

(X, 7 - 1 X n + 1). We claim that for any positive integer r, 

(3.16) lim Xijr = y = lim Xnjr Y 

(where Xnk = a for k < 0, Xnk = b for k > n). If, say, the first limit fails to hold for 
some r, we can find a subsequence of integers Y? and 8 > 0 such that 

lime , x; n Hi Y5 Xt7 - k = y, k = 1, 2,.r - 1, but x,j - r < y -8 all n E9 Y. Then, 
for any 0 < -q < 8, we have 

(3.17) lim L ip = 0. 
1 

GYw X,,p E[l-,l- 

But assuming (as we can) that y - 8, y - 'q are points of continuity of a, the limit 

in (3.17) should be a(y - 'q) - a(y - 8) (by Theorem 111.1.1 in Freud [4, p. 89]). As 

a is continuous and strictly increasing from the left at y, we have a(y-7')- 

a(y - 6) > 0 for small 71, and so we have a contradiction to (3.17). Hence (3.16) 
holds. Next, by right continuity of a and the Markov-Stieltjes inequality (see, for 
example, Freud [4, p. 29]), we have 

nAn < a(Xnj,,+l) 
- 

a(x,,I _1) -? 0 as n so, 

by (3.16) and continuity of a at y. Since T(n, g) omits at most 21 integers, and 
j X T(n, g) impliesy, E (x*1i, x*, +1) for some 1 < i < 1, we have 

(3.18) lim nj = 0. 
fl --->0 

I g 

Theorem 111.1.1 in Freud [4, p. 89] and (3.18) imply 

(3.19) lim E Xnjh(Xnj) = h(x) dao(x) 
t7 ??_ 0 j e T(t7, g) 

for any function h bounded in (a, b) and properly Riemann-Stieltjes integrable with 
respect to da(x) in each compact subinterval of (a, b) and such that h is (improp- 

erly) Riemann-Stieltjes integrable with respect to da(x) in (a, b). 
Next, by (3.12), we can choose K > 0 and open intervals, J1, J2 ... , J, contain- 

ing Yi -.. y, and (possibly unbounded) open intervals J0 with left endpoint a, 

-I/+ 1 with right endpoint b, such that 

(3.20) wh g(x)rihe<n KGoi (x), x Gb ,= 0,suc+ 1. 

By reducing the sizes of the X,, if necessary, we may assume that for J = U , 
and for some given ? > 0, 

1+1 

(3.21A) K> S G,(x)da(x) <. 

In view of (3.20), this implies that 

(3.21B) fg(x) da(x) <c. 
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Let 

X(x) = I( x E= (a, b) \J, 
O) otherwise. 

Then (2.5) gives 

K *(g)- bg(x)da(x) 

(< E Xnj(gx)(xn,) 
- b (gx)(x) da(x) 

(3.22) j GEr(n, g)a 

+ E Xnjg(xnj) + f g(x) da(x) 
j G (n, g) 

Since h(x) = (gx)(x) is bounded in (a, b) \f and vanishes outside this bounded 
set, (3.19) shows that the first term in the right member of (3.22) tends to 0 as 
n -* cc. Next, by (3.21B), the third term in the right member of (3.22) is bounded by 
8. Finally, we deal with the second term. By (3.20) and the definition of X. 

1+1 

L Xng(xnj) < K>2 E Xnj(Gi(l -X))(Xn) 
J ET(n, g) i=O jCr(n, g) 

Xnj i 

1+1 

? K>2 ( E xnjG(x)nj - E Xnj(Gx)(xnj)} 
i=O j T(n, G,) jGE Tvn, g) 

(as T(n, g) c T(n, G) and G. is nonnegative) 
1+1 jb(G )()dx)+/( l? 

? K E {f Gi(x) da(x)- (GiX)(x) do(x) + a/(K(l + 2))) 

(for large n, by Lemma 3.2, (2.5) and (3.19)) 

? 2? for large n, by (3.21A). 

This completes the proof of (a). 
(b) Let - > 0. As da(x) is the unique solution of its Hamburger moment problem, 

the same is true of da(x)/(l + x2) [4, p. 77, Proof of Theorem 11.4.3]. Then, by a 
theorem of M. Riesz [4, p. 77] there exists a polynomial P(x) such that flg -P1a2 
< c. Now, if n exceeds degree (P), we have P = Ln(P) and so (2.7) and Minkowski's 
inequality give 

|L*(g) - g l2 A E ij(X)(g - P)(Xn1) 

(3.23) j E=-,r (ng) a,2 

+ || Inj(X)P(Xnj) + IIP- gIa2 
j ? T( n, g) of,2 

Writing 

(3.24) h ((X) 0 if x = xnj somej t f(n g) 

\(g - P)(x) all other x, 
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we see that the first term in the right member of (3.23) is IILn(hn)jIa2. Now, by 
exactness of the rule (2.2), we have 

IILn(hn) II,2 = f L M(hx)(x) da(x) = Kn(h) = K*((g p)2) 

(by (3.24) and as T(n, (g - p)2) = T(n, g)) 

(3.25) lb (x) da(x) =,2 as n -oo. 

Here we have used Theorem 3.5(a) and Lemma 3.4(c). Next, applying Hblder's 
inequality to the second term in the right member of (3.23) and using Xny = Iiln jI12 

((2.8)), we see that 

| 
lEnj(X)P(Xnj) {< E Xnj* p( L( Xnj)T)- 0 as n -o 

jrT(n, g) a,2 jrT(n, g) jT(n, g) 

(by (3.18) and boundedness of P in [Yi - 8, y, + 8] any 8 > 0, and as T(n, g) omits 
at most 21 integers). Together with (3.23), (3.25), this completes the proof of the 
theorem. Q.E.D. 

Remarks. (a) Theorem 3.5(a) deals with very general weight functions and 
integrands, and as such, is not included in the work of Rabinowitz [10] or of 
Lubinsky and Rabinowitz [7]. In the latter paper, the authors showed that if a'(x) is 
bounded above and below by positive constants near y E (a, b), then 

b Ix -KY da(x) - K*(x-YI BK) 

tends to zero like n l+8 as n so when (a, b) is bounded- see Theorem 4.3, 
Corollary 4.4 and Theorem 7.5 in [7]. Although (a, b) was bounded in [7], the 
methods there extend to infinite intervals. 

Further, because of the stronger assumptions on da(x) in [7] (though these were 
"local" assumptions), one could replace (2.4A, B) by the simpler condition that the 
closest abscissa to each interior singularity is omitted. Consequently, for the weight 
functions in [7], Theorem 3.5 holds with the simpler definition of K *(g) and L*(g) 
that only the closest term to each singularity is omitted. This is the case not only for 
finite intervals, but for weight functions on the whole real line such as exp( - lxI x) 

(A > 1) or even Freud's weight functions [5]. 
(b) We show now (compare Davis and Rabinowitz [1]) that the assertion of 

Problem 12 in Freud [4, pp. 132-133] is incorrect. Freud evidently intended to 
ignore the singularity by setting f (xnj) = 0 whenever xnj coincided with a singular- 
ity of f. For simplicity, let (a, b) be finite and a'(x) be bounded above and below 
by positive constants in an open interval containing some closed subinterval J of 
(a, b). By Corollary 4.4(iii) in [7], for y e J, 

| |-Y I- dot(x) -Kn iX Yl 
(3.26) a 

e -n'I1IXc(n) -I + O(n-l`), 

where xc(n) is the closest abscissa to y and ? is independent of n and y. Since the 
abscissas { xnj } are dense in J, it is easy to see that we can choose y E J such that 
0 < IXC(n) - Y I < e -n for infinitely many n. Consequently the left member in (3.26) 
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diverges to - so for an infinite subsequence of integers. By a lengthier argument, it 
is possible to give a similar counterexample for more general weights da(x), for 
which a(x) is strictly increasing in some subinterval of the support of da, regardless 
of whether the support is bounded or unbounded. 

(c) For weights on the whole real line, there is the following corollary: 

COROLLARY 3.6. Let P(x) be a polynomial, not vanishing identically. Let X > 1 
and y > -1. Let 

(3.27) a(x) =P(I x |) 1 exp( -| IXI), x E= R. 

Letf: R - R and -?? = yo < Y1 < Y2 < ... < yl+1 = so be such that f is bounded 
and Riemann integrable in each compact subinterval of (y, y,+1), i = 0, 1, 2...1. 
Further assume P(Iy,1) = 0, i = 1, 2,..., 1. 

(i) Suppose If (x)Ia'(x) and f (x) a'(x) are improperly Riemann integrable in R 
and that 

(3.28) lim If(x)l Ix -Yj Ilogx -_yj1 
= 0, i = ,2, ... 1. 

x . 

(3.29) lim If(X) | IP(IxI) | exp IXl),Xllloglx1 =0. 

Then, 

lim K*[f]= f f(x) a'(x) dx. 
n -ox 0x 

(ii) Assume f2(x)a'(x) is improperly Riemann integrable in R and that (3.28) and 
(3.29) hold with Ilf replaced by f 2. Then, 

lim IIL*(f)-a Ia2 = O 
n xc 

Proof. (i) We note firstly that da(x) is the unique solution of its Hamburger 
moment problem (see Theorem 11.5.2 in [4, p. 80]). Further, we can write 

a'(x) = exp(-2Q(|xj)), x E R. 

where 

Q(x)= {IxK -y log|P(Ix ) |}/2, x E R. 

As X > 1, we see that Q'(x) > 0 for large x, and that (7) in the definition in [6] is 
satisfied with arbitrarily small 0 > 0. Hence, in the sense of [6], da is a Freud 
weight. It follows from Corollary 2 in [6], that there exists Go = GI+1 satisfying 
(3.13) and (3.15) and such that for some positive c, and for large lxi, 

Go(X) > c P(Ix |) I exp(Ix | )|x I Ilog xI |2 

Then (3.29) implies that (3.12) holds for i = 0 and i = I + 1. Next, Corollary 4 in [6] 
shows that there exist G1, G2 . ... GI satisfying (3.14), (3.15) with 

-1 -~~~~~2 
G.(x) > cIx - y -11 logIx -YJ 1- i = 1,2,...,1. 

Then (3.29) implies (3.12) for i = 1, 2,..., 1. Hence, Theorem 3.5(a) yields our result. 
(ii) is similar. Q.E.D. 
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We note that IlogIx - Yjv 12 in (3.28) can be replaced by IlogIx - yi 11 or 

Iloglx - yj I Jlogjlogjx - yj11 I I' and so on, for any - > 0; see [6]. Similarly, Ilogjxj 12 
in (3.29) can be replaced by IlogIxi I(1?e) or IlogIx I I logIlog I x I I I and so on, for 
any c > 0. 

4. Convergence of Product Integration Rules. Theorem 3.5 enables us to prove 
convergence of product integration rules based on Gaussian quadratures. First, 
however, we need the following lemma: 

LEMMA 4.1. (a) Assume f is monotone integrable. Then, if 1 < p, q < so and 
I /p + l/q = 1, we have 

(4.1) J[; f] f 
(x)d/ (x) l 'ILn* (f I ap df| 
a ~~~~1nd a aq 

provided the right member is finite. 
(b) If 1 2 is monotone integrable, and P is any polynomial of degree < n, then 

Jn*[ I; f] lf (x) di | (x) 

(4.2) A P d: | { [Kn a,21 

+ K,*(f PI)-b ff(x)IP(x)) Ida(x) 
n~~~~ 

provided the right member is finite. 

Proof. (a) By definition of In*, L* at (2.20), (2.7) we see that 

In[f [11- fb- 
() (x)d13(x) = (L*(f) - )(x) d13(x) 

= fb (L*(f ) - )(x) -7s (x) da(x). 
a d 

Note that as f is monotone integrable, its points of discontinuity have da-measure 
zero, and hence d/3-measure zero, by absolute continuity of /3 with respect to a. 
Holder's inequality then gives (4.1) and that f is Lebesgue-Stieltjes integrable with 
respect to d/3(x), provided the norms in (4.1) are finite. 

(b) The method of proof is very similar to that of Theorem 1 in Sloan and Smith 
[13]. Using (2.6), (2.15), (2.18) (2.21) and the fact that P(xnj) = Sn[P](xnj)= 
Sn-l[P](xnj) (as degree (P) < n and T9n(xnj) = 0), we see 

| In JJ f(x) dI/3(x) 

<| j XL nj( Sn-1 
dfl 

| n-11 ]F)(Xnj)f(Xnj)| 
(4.3) ~ jrnf ~~]Hn[I}x}fx} 

+ -b (IP if )(x) da(x) + f|xE nj(lPlfx)(Xnj) )da(x)' x 
j GT(n, f ) 

+ |bf (x) IP(x)I-| dak(x) |)dot(x)| 
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Now 

| Sn-l dpx ]|Xnj) - Sn-11P] l(Xnj)| 

< |Sn -I d,,, ]Sn-1[P] I(Xnj) = |Sn-1 [# oP] (Xnj) 

Then Holder's inequality gives 
2 

{Xn Sn-1 [ am] |Sn [P]I} (Xn )f(xnj) 

j (( f ;\jnlda- (X )( E nf(J 

{=X d ca - 

= ~n 

(4.4) = fS -[ da Pj(x) da(x)}{Kn*(f2)} 

(as degree (Sf2 1) = 2n -2 and T(n, f 2) = T(n, f)) 

d13 2 
|da P {K *(f2)) 

da , 
n 

(by Bessel's inequality). Next as r(n, f IPI) = Tr(n, f ), the sum in the second term in 
the right member of (4.3) equals K *(f jPj). Finally, the third term in the right 
member of (4.3) is bounded by 

(4-5) b b x) I Pi-L- (x) da(x) f 11fa,2 P dp Q. E. D. 
Jf~x)J cia ia a,2 

We can now prove our main result. For the reader's convenience, the main 
assumptions on a, /3 are restated. 

THEOREM 4.2. Assume that a: (a, b) -- R is right continuous, monotone increasing 
with infinitely many points of increase, and is the unique solution, apart from 
normalization, of the moment problem (2.1). Assume that /B: (a, b) -> R is right 
continuous, of bounded variation in (a, b), and is absolutely continuous with respect to 
a, as at (2.12). Suppose that the Radon-Nikodym derivative d/3/da satisfies 

(4.6) ci d <2 00. 

Then, whenever f2 is monotone integrable, 

(4.7) 1,M I"*[ P; f =| f (X) d/8(X) 
neon ~~~a 

and 
fb 

(4.8) lim Jn*[/3; f]=j f(x)dl/3I(x). 
n - DooA 

Proof. Firstly, note that (2.1), (4.6) and Hblder's inequality imply that (2.11) 
holds. Further, as in the proof of Lemma 4.1, f 2 is Lebesgue-Stieltjes integrable 
with respect to d/3(x). Then, Theorem 3.5(b), Lemma 4.1(a) with p = q = 2 and 
(4.6) give (4.7). Next, let E > 0. Since d/3/da satisfies (4.6), then as in the remarks at 
the beginning of the proof of Theorem 3.5(b), we can choose a polynomial P(x) 
such that IIP - d#//daIIa2 < e, while as f2 is monotone integrable, Theorem 3.5(a) 
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gives 

lim K *(f 2) bf 2(x) da(x) = f 112 
n7O< IIa,2. n -- oo 

Hence the first term in the right member of (4.2) can be bounded by 3eIlf lla,2 for 
large n. Finally, by Lemma 3.4(c), (fIPI)(x) is monotone integrable, so by Theorem 
3.5(a), 

lim K (fI PI) = f (fI P|)(x) da(x) 
n~~~~ n - oc 

and this deals with the second term in the right member of (4.2). Q.E.D. 
For functions with at worst endpoint singularities, there is the following corollary: 

THEOREM 4.3. Assume that a, /3 are as in Theorem 4.2, and (4.6) holds. Let f be 
properly Riemann-Stieltjes integrable, with respect to da(x), in every compact subin- 
terval of (a, b) and let 

lim a+ f2(x) da(x) 11fa 2 < ?? 
A -a+A 
B-fb- 

Suppose there exist functions Go, G1 satisfying (3.13), (3.15) and 

limsupf2(x)/GO(x) < ox; limsupf2(x)/G1(x) < ox. 
xea+ x-cb- 

Then 

nb 
liM In M3 f I = liM E Wnif (Xni) = | (x) dfl(x), 

n - oo n -? i=1 a 

lim Jn[I3; f ] = lim I WniwIf(xnJ) f bf(x) dIiI(x) 
n A o n? i=- a 

Proof. This follows from Theorem 4.2 as T (n, f) = {1, 2, . . ., n } for all n > 1, so 

In *[,8; f ] = In[ fl; f ] and so on. Q.E.D. 
For weight functions on the whole real line, there is the following corollary: 

THEOREM 4.4. Let P(x) be a polynomial, not vanishing identically. Let X > 1 and 
y> -1. Let a'(x) be given by (3.27). Let f: R -+ R and - ? =YO < Y1 <Y2 < 

. < yl+1 = oc be such that f is bounded and Riemann integrable in each compact 
subinterval of (yi, yi+), i = 0, 1, 2,..., 1. Further assume P(jy1j) # 0, i = 1, 2,..., 1, 
and that f 2(x)a'(x) is improperly Riemann integrable in R, while 

(4.9) lim If(X)I I X - Y 11/21 logx -y X _ = 0, i = 1,2,..., 1. 
x >V 

(4.10) lim If(x)I IP(X) I/2 exp( -I x X/2) 1 / logXII= 0. 

Let k: R -* R be Lebesgue measurable, with 

(4.11) 1?? k2(X) I p(IX)I exp(IxI-)dX < X. 
- 00 
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Then, if d,8(x) = k(x) dx, 
00 00 

liM In* [/3; f I f (x) k(x) dx, lM Jn* I P; f ]=| f(x) Ik(x) Idx. nen ---+ Too -oo7-->000 
If 1 = 0, so that f has no singularities interior to R, we can replace In* and Jn* by I, 
and Jn, respectively. 

Proof. This follows from Theorem 4.2 in the same way that Corollary 3.6 followed 
from Theorem 3.5. Q.E.D. 

Remarks. (a) For the Hermite weight a'(x) = exp( - x2), Smith, Sloan and Opie 
[14, Theorem 1] showed that (4.11) can be replaced by the weaker condition 

f|0 {|k(x)| exp(x2/2)} dx < o somep> 1. 

(For p = 2 and the Hermite weight, this coincides with (4.11).) Their results were 
based on Nevai's results [9] on Lp mean convergence of Lagrangian interpolation. 
No such results exist for the more general weight functions in Theorem 4.4, though if 
more were known about the orthogonal polynomials for these weight functions, such 
theorems could be proved. We note, however, that for the Hermite weight our 
condition (4.10) reduces to 

lim f (x) I exp( -x2/2)}x 1x/2 loglx}| = 0, 
Axle 00 

which is weaker than the condition on f in Theorem 1 of [14]. Of course, as after 
Corollary 3.6, jlogjxj I can be replaced by IlogxI 1I1/2+f or IlogIx 11/2IlogIlogIx I 11/2I , 

and so on, for any e > 0. 
(b) Finally, we note that Theorem 5(ii) in Sloan and Smith [13] and Corollary 

10.1.18 in Nevai [8, p. 181] show that for general weights, one cannot replace (4.6) in 
Theorem 4.2 by Ijd/3/daiiaq < x, some q > 1. 
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